Dark radiation from the axino solution of the gravitino problem

Jasper Hasenkamp (Hamburg U.)

at 19th International Conference on **SU**per**SY**mmetry and Unification of Fundamental Interactions **2011** (*Fermilab*, Batavia, Illinois USA)

University of Hamburg (Germany)

Based on arXiv:1107.4319

29th August 2011

New observation opportunity for physics beyond the two standard models

 \bullet Bounds on $\rho_{\rm rad}$ given in terms of the effective number of neutrino species $\textit{N}_{\rm eff}$ defined by

$$\rho_{\text{rad}} = \left(1 + \textit{N}_{\text{eff}\, \overline{8}} \left(\frac{\textit{T}_{\nu}}{\textit{T}_{\gamma}}\right)^{4}\right) \rho_{\gamma} \qquad \text{ with } \tfrac{\textit{T}_{\nu}}{\textit{T}_{\gamma}} = \left(\tfrac{4}{11}\right)^{\frac{1}{3}}.$$

 Departure ΔN_{eff} from standard cosmology making use of the Standard Model parameterised as

$$N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} + \Delta N_{\text{eff}} \quad \text{ with } \quad N_{\text{eff}}^{\text{SM}} \simeq 3.$$

- $\rho_{\rm rad}$ affects expansion rate $\Rightarrow \Delta N_{\rm eff}$ can be constrained.
- Independent measurements probing different cosmological times \rightarrow might reveal time evolution of $\Delta N_{\rm eff}$ \neq increasing $N_{\rm eff}$ by, e.g., additional thermal species.

New observation opportunity to reveal an evolution of $\Delta N_{\rm eff}$

Current/ongoing observations

ullet ⁴He formed \sim 1 s \to big bang nucleosynthesis (BBN) lasts \sim 20 min

$$\textit{N}_{\text{eff}}^{\text{BBN}} = 2.4 \pm 0.4 \quad \text{(68\% CL)}^*
ightarrow \text{consistent with } \textit{N}_{\text{eff}}^{\text{SM}}$$

100 ky later Universe becomes transparent for photons
 → cosmic microwave background (CMB) observed by ACT and WMAP:

(CMB alone)
$$\emph{N}_{eff}^{CMB} = 5.3 \pm 1.3$$
 $(68\%~CL)^\dagger
ightarrow \Delta \emph{N}_{eff} \sim 2.3$

• using baryonic acoustic oscillations (BAO) and today's Hubble rate H_0 :

(WMAP+ACT+BAO+
$$\textit{H}_0$$
) $\textit{N}_{\text{eff}}^{\text{CMB}} = 4.56 \pm 0.75$ (68% CL) $^\dagger \rightarrow \Delta \textit{N}_{\text{eff}} \sim 1.5$

 \Rightarrow everything consistent with $N_{\text{eff}}^{\text{SM}} \rightarrow$ only hint of tension \rightarrow Planck satellite $\rightarrow \Delta N_{\text{eff}} \simeq 0.26^{\ddagger} \Rightarrow$ 4- to 5- σ if current central values accurate!

Planck mission could turn hint into a discovery

^{* [}Simha, Steigman, 08] consistent with earlier studies. Under discussion, see [Aver, Olive, Skillman, 10] & [Izotov, Thuan, 10].

[†] Atacama Cosmology Telescope (ACT) data analysis [Dunkley et al., 10] using WMAP7.

^{‡[}Perotto, Lesgourgues, Hannestad, Tu, Wong, 06] & [Hamann, Lesgourgues, Mangano, 08].

Dark radiation from invisible gravitino decay at the right time...

late emergence of visible radiation excluded \rightarrow dark (decoupled) radiation

- 1) Gravitino $\psi_{3/2}$ inevitable prediction of any local supersymmetric theory
- 2) Standard solution of the **strong CP problem**: Peccei-Quinn mechanism \rightarrow introduces axion $a \xrightarrow{susy} \{a, \phi_{sax}, \widetilde{a}\}$ with $\mathcal{L}_{PQ} \propto 1/f_a$, where $f_a \gtrsim 10^9$ GeV
- \Rightarrow with $m_{
 m losp}^* \gtrsim m_{3/2} = \mathcal{O} \, (\text{100 GeV}) > m_{\widetilde{a}} \,$ gravitino decays invisibly

$$\Psi_{3/2} \rightarrow \widetilde{a} + a$$

with lifetime $au_{3/2}$ emitting relativistic axion and axino $(m_a \sim \mu {\rm eV}, m_{\tilde a} \ll m_{3/2})$

$$t_{
m BBN}^{
m end} \sim 10^3 \ {
m s} < \, au_{3/2} \simeq 10^9 \ {
m s} \left(rac{10^2 \ {
m GeV}}{m_{3/2}}
ight)^3 \, < 5 imes 10^{10} \ {
m s} \simeq au_{
m CMB}^{
m max\, \dagger}$$

Gravitino decays naturally at the right time

*LOSP = lightest ordinary supersymmetric particle = lightest particle in MSSM

† [Fischler, Mevers, 11]

...and with the "right" amount

$$\Delta N_{
m eff} \simeq 0.6 \left(rac{10^2 \ {
m GeV}}{m_{3/2}}
ight)^{rac{5}{2}} \left(rac{m_{\widetilde{g}}}{1 \ {
m TeV}}
ight)^2 \left(rac{T_R}{10^{10} \ {
m GeV}}
ight)
ightarrow \mathcal{O}\left(1
ight)!$$

- 1) $\Delta N_{\text{eff}}(m_{3/2}, m_{\tilde{g}}, T_{\text{R}})$ only $\rightarrow m_{3/2}, \tau_{3/2}(m_{3/2}), Y_{3/2}^{\text{tp}}(m_{3/2}, m_{\tilde{g}}, T_{\text{R}})$
- 2) gluino-gravitino mass gap natural for $m_{\mathrm{losp}} \gtrsim m_{\mathrm{3/2}}$ (gravity mediation)
- 3) new upper bound on reheating temperature $T_R \lesssim 10^{11}~\text{GeV} \to \text{no}$ upper bound from entropy production (dark radiation does not thermalize)

Thermal leptogenesis (consequence of see-saw mechanism): origin of matter with requirement $T_R \gtrsim \mathcal{O}\left(10^{10}~\text{GeV}\right) \rightarrow \text{experimental input: light } m_{\nu}\text{s}$

4) $\Delta N_{\rm eff}, m_{\widetilde{g}}$ might be measured soon $\Rightarrow m_{3/2}$ and $T_{\rm R}$ tightly constrained \Rightarrow surprisingly **high testability!**

Thermal leptogenesis might predict an desired increase of $N_{\rm eff}$

LOSP decay...

LOSP (bino,Higgsino,stau,...)* $ightarrow \widetilde{a} + SM$ particle \Rightarrow BBN constraints!

- $\checkmark \;\; \Delta \textit{N}_{ ext{eff}}^{ ext{losp decay}} \ll 1 \; ext{and} \; \Omega_{\widetilde{\textit{a}}}^{ ext{losp decay}} \ll 1$
- \odot early enough decay \rightarrow possible mass bounds and upper bound on f_a

$$f_a \lesssim 10^{10} \text{ GeV} \left(\frac{m_{\widetilde{B}}}{100 \text{ GeV}} \right)^{\frac{3}{2}} \left(\frac{\tau_{\widetilde{B}}^{\text{max}}}{10^{-2} \text{ s}} \right)^{\frac{1}{2}} \qquad (\widetilde{B} = \text{bino})$$

- © wino/Higgsino LOSP $\to \tau^{\rm max} \sim (10^2 10^3) {\rm s}$ $\to f_a > 10^{12} {\rm GeV}$ and $m_{\rm losp} \sim m_{3/2}$ allowed
- © DFSZ dim-4 operators to H-h and sfermion-fermion $\to f_a > 10^{12}$ GeV and $m_{\rm losp} \sim m_{\rm 3/2}$ allowed

LOSP decay safe and allows for large f_a and $m_{\rm losp} \sim m_{3/2}$

^{*}bino: [Baer, Kraml, Lessa, Sekmen, 11]; stau: [Freitas, Steffen, Tajudddin, Wyler, 11]; Higgsino.wino...; [this work] using [JH. Kersten, 11] & [Covi, JH. Pokorski, Roberts, 09]

...and dark matter

Three working scenarios:

- 1) Natural cold axion dark matter: $f_a \sim 10^{12} \text{ GeV} \rightarrow \text{no bino LOSP}$ and $m_{\tilde{a}} \sim \mathcal{O} (\text{keV})^*$ to avoid overproduction (model dependent production).
- 2) Warm axino dark matter: smaller $f_a \sim 10^{10} \text{ GeV} \Rightarrow \Omega_a \ll 1$ and $\Omega_{\widetilde{a}}^{\text{ksvz}} > 1 \rightarrow \Omega_{\widetilde{a}}^{\text{dfsz}} \sim \Omega_{\text{DM}}$ with $m_{\widetilde{a}} > \mathcal{O}(\text{keV})$.
- 3) **Beyond LHC**: $f_a \gg 10^{12}$ GeV not forbidden with correspondingly heavier sparticles (not natural and more complicated) \rightarrow beyond LHC discovery range \rightarrow LHC can not exclude the scenario.

Natural cold axion (warm axino) dark matter

^{*}Axino mass model dependent. \mathcal{O} (keV) possible, e.g., [Tamvakis, Wyler, 82], [Goto, Yamaguchi, 92] & [Chun, Kim, Nilles, 92].

Conclusions and Outlook

 $\Delta N_{\rm eff}$ of \mathcal{O} (1) after BBN for expected (natural) masses and $T_{\rm R}$ motivated by a completely disconnected notion (thermal leptogenesis)

- $ightarrow~T_{
 m R}\lesssim 10^{11}~{
 m GeV}$ independent of PQ parameter space $ightarrow m_{\widetilde{g}}/m_{3/2}>1$ only
 - \odot gravitino problem "solved by" axino problem \to solution of strong CP problem enabled \to calls for more comprehensive studies
- o no constraints from and on saxion* except Φⁱ_{sax}
- \odot natural cold axion (warm axino) dark matter \rightarrow calls... studies
- \odot thermal leptogenesis might predict a desired increase in $N_{\rm eff}$
- ⇒ Prediction from a consistent cosmology!
 - © **High testability**: LHC $\rightarrow m_{\widetilde{g}}$, Planck $\rightarrow \Delta N_{\rm eff}^{\rm CMB} > 0 \Rightarrow$ gravitino problem a fortune \Rightarrow © $m_{3/2}$ tightly constrained $\Rightarrow T_{\rm R}$ as well

Even though $\Psi_{3/2}$ and \widetilde{a} elusive and T_R experimentally not accessible \rightarrow prediction testable with on-going experiments!

^{*} as in [JH, Kersten, 11]

Thank you for your attention!

Hopefully, there are comments/questions?